+ +
- -
Systèmes d'Exploitation
Calendrier  Détails
Programmation
 
Calendrier  Détails
Processeurs ARM
 
Calendrier  Détails
Processeurs PowerPC
 
 
 
 
Calendrier  Détails
Communications
 
 
Calendrier  Détails
+ +
> >
- -

 
ac6 >> ac6-training >> Communications >> Connectivity >> FireWire Télécharger le catalogue Télécharger la page Ecrivez nous Version imprimable

IP1 FireWire

This course covers IEEE1394, IEEE1394a, IEEE1394b and DV specification

formateur
Objectives
  • Differential transmission advantages are highlighted.
  • The course explains the bus initialization process.
  • Packet format and subaction transactions are described with the assistance of the Lecroy FireInspector
  • 1394a arbitration enhancements are emphasized.
  • The course describes the new 1394b beta signalling.
  • After having introduced digital camera fundamentals, isochronous traffic is analysed.
  • The OHCI specification and especially the management of transfer descriptors is also handled in this course.
A Lecroy FireWire analyser is used to capture and display USB traffic.
•  A lot of traces are included in the material.
A more detailed course description is available on request at training@ac6-training.com
Prerequisites
  • Experience of a digital bus is mandatory.

1394-1995 OVERVIEW
  • Bus creation and history
  • 1394 bus architecture
  • Technical introduction : time-slicing
  • Support of asynchronous and isochronous transactions
  • Protocols stack : AVC, SBP-2, 1883, HAVI, IP
LAYER MODEL
  • Unified transactions
  • The transaction layer
  • The link layer
  • The physical layer
  • The management layer
  • Protocol implementation, highlighting the separation between software and hardware domains
HARDWARE IMPLEMENTATION
  • LVDS technology basics
  • Data and strobe encoding
  • Line states for arbitration, configuration and reset
  • Decoding rules
  • Idle bus delays to enable arbitration requests : the gaps
  • Power Classes
  • Suspend / Resume mechanism
SOFTWARE INTERFACE
  • IEEE1212 address definition and node mapping
  • Link layer Control & Status Registers
  • Link layer configuration ROM organization
  • PHY layer registers
  • TI 12LV22 programming interface to access local PHY registers
BUS INITIALIZATION
  • Reset causes
  • Initialization steps
  • Tree building, contention resolution
  • Self-ID process, Self-ID packet format
  • Software configuration : cycle master enabling, IRM identification, Bus Manager select
1394/1394a ARBITRATION
  • Geographic priority
  • Arbitration for asynchronous transfers
  • Arbitration for synchronous transfers
  • Inefficiency of gaps when data rate increases
  • 1394a optimizations : accelerated and fly-by arbitrations
ASYNCHRONOUS TRANSACTIONS
  • Read and Write REQ/RESP packet format
  • Resource locking
  • Retry goals
  • Single-phase retry
  • Transaction errors management
1394-BASED DIGITAL CAMERA SPECIFICATION
  • Digital camera control command registers
  • Camera initialize register
  • Isochronous packet format for VGA non compressed format (Format_0)
  • Video data payload structure
ISOCHRONOUS TRANSACTIONS
  • Talker and listeners
  • Channel number and bandwidth allocation
  • Real time data flows requirements
  • Packet format
PHY-LINK INTERFACE
  • Pinout
  • PHY register access
  • Status information transmission from PHY to Link
  • Packet transmission timing diagram
  • Packet receipt timing diagram
1394b OVERVIEW
  • New transmission media
  • Bilingual ports
  • Compatibility with 1394/1394a specifications
BETA SIGNALLING
  • Optic transmission fundamentals
  • Full duplex communication
  • Scrambler / Descrambler operation
  • Benefits of 8b/10b encoding
  • Training sequence
1394b ARBITRATION
  • Symbol use instead of gaps
  • Bus requests pipelining, arbitration phases
  • Arbitration in a hybrid tree including DS ports and Beta ports
CONNECTION MANAGEMENT
  • Tones usage
  • Auto-negotiation
  • Standby / Restore mechanism
  • Loop removing
1394b PHY-LINK INTERFACE
  • Enhancement of the 1394a PHY-LINK interface to support S800
  • New PIL-FOP interface to support higher data rates
  • Point-to-point packet protocol between the PIL and the FOP
OPEN HOST CONTROLLER INTERFACE
  • SelfID receive
  • Asynchronous transmit DMA
  • Asynchronous receive DMA
  • Isochronous transmit DMA
  • Isochronous receive DMA
  • Physical requests
  • Error management