
RC2 - NEON-v8 programming

This course explains how to use ARMv8 NEON SIMD instructions to boost
multimedia algorithms

Objectives

This course has been designed for programmers wanting to run multimedia algorithms on NEON Single Instruction Multiple
Data execute units on ARMv8 processors.
Evolution of the NEON architecture between ARMv7 and ARMv8 is detailed.
Each instruction family is detailed, first at assembly level, and then at C level using macros developed present in arm_neon.h
file.
Several tricky usage of processing instructions are provided.
Vector and vector element load / store instructions are studied and guidelines for organizing data in memory are provided to
minimize the number of memory accesses.
The underlying cache operation as well as preload mechanisms (instruction and hardware prefetch) are detailed to explain how a
processing can be pipelined .
The course shows how DSP typical algorithms such as FIR and FFT can be vectorized and then optimized to be executed on
NEON unit.

Cryptographic operations are also detailed, with explanation of the supported algorithms.
Labs are compiled with GCC and run on a Linux Cortex-A53 board or a simulator
A more detailed course description is available on request at training@ac6-training.com

Prerequisites

Knowledge of ARMv7 instruction sets.

Course Environment

Theoretical course
PDF course material (in English) supplemented by a printed version.
The trainer answers trainees' questions during the training and provide technical and pedagogical assistance.

Practical activities
Practical activities represent from 40% to 50% of course duration.
Code examples, exercises and solutions
One PC (Linux ou Windows) for the practical activities with, if appropriate, a target board.
One PC for two trainees when there are more than 6 trainees.
For onsite trainings:
An installation and test manual is provided to allow preinstallation of the needed software.
The trainer come with target boards if needed during the practical activities (and bring them back at the end of
the course).

Downloadable preconfigured virtual machine for post-course practical activities
At the start of each session the trainer will interact with the trainees to ensure the course fits their expectations and
correct if needed

Target Audience

Any embedded systems engineer or technician with the above prerequisites.

/
mailto:training@ac6-training.com


RC2 - NEON-v8 programming Sunday 6 July, 2025

Evaluation modalities

The prerequisites indicated above are assessed before the training by the technical supervision of the traineein his
company, or by the trainee himself in the exceptional case of an individual trainee.
Trainee progress is assessed in two different ways, depending on the course:

For courses lending themselves to practical exercises, the results of the exercises are checked by the trainer
while, if necessary, helping trainees to carry them out by providing additional details.
Quizzes are offered at the end of sections that do not include practical exercises to verifythat the trainees have
assimilated the points presented

At the end of the training, each trainee receives a certificate attesting that they have successfully completed the
course.

In the event of a problem, discovered during the course, due to a lack of prerequisites by the trainee a different
or additional training is offered to them, generally to reinforce their prerequisites,in agreement with their
company manager if applicable.

Plan

Day 1

Introduction to NEON

Clarifying the resources shared by NEON and the scalar floating point engine
Explaining the AArch32 and AArch64 differences
NEON Register banks
S, D and Q registers (AArch32)
B, H, S, D and V registers (AArch64)
Data types
Vector vs scalar
Related system registers
Alignment issues
Enabling NEON
Differences between NEONv7 and NEONv8

NEON instruction syntax

Instructions producing wider / narrower results
Instructions modifiers
Selecting the shape
Selecting the operand / result type
Syntax flexibility
Declaring initialized vectors in C language
Using unions with vectors and arrays of vectors to simplify the debug
Casting vectors

Data transfer instructions

Move
Swap
Table lookup
Vector transpose
Vector zip / unzip
Data transfer between NEON and integer unit
Practical lab: clarifying narrow and long instructions, building a vector from bytes selected from a pair of vectors
Exercise: Example: managing audio samples
Exercise: Using load with de-interleaving instructions to store all right lane samples into a vector and left lane samples into another vector
Exercise: Clarifying narrow and long instructions, building a vector from bytes selected from a pair of vectors



RC2 - NEON-v8 programming Sunday 6 July, 2025

Arithmetic Instructions

Arithmetic instructions
Add, modulo vs saturated arithmetic
Halving / Doubling the result
Rounding
Subtract
Multiply
Multiply accumulate / Multiply subtract
Absolute value
Min / Max
Exercise: Implementing a complex multiply accumulate with NEON
Conversion instructions
Converting Floating Point numbers into Fixed point numbers
Converting Fixed point numbers into Floating point numbers
Exercise: Converting fixed-point elements into single precision floating point values and adding the resulting elements
Advanced arithmetic instructions
Reciprocal estimate, reciprocal square root estimate, Newton-raphson algorithm
Pairwise instructions

Day 2

Logic and Bitfield Instructions

Element comparison
Logic instructions
Logical AND, Bit Clear, OR, XOR
Operations with immediate values
Bitfield instructions
Count Leading zeros, ones, signs
Bitwise insert instructions
Conditional bitwise insert instructions, avoiding branches
Shifts with possible rounding and saturation
Bitfield reverse
Exercise: Transposing a matrix, shifting a large bitmap using vector instructions

NEON Cryptography Extension

The Cryptography extension
Algorithms supported
AES
SHA1
SHA256

Optimizing techniques

Automatic vectorization
Tuning loops for optimal results
Avoid loop feedbacks
Avoid loop-dependent conditionals
Avoid early termination
Padding loops
Exercise: Experimenting with loop auto-vecorization
Pointers and arrays
indirect addressing
pointer aliasing and restrict
Exercise: Using restrict to eliminate dependencies
Function calls and inlining



RC2 - NEON-v8 programming Sunday 6 July, 2025

promises
Exercise: Making promises to help the compiler optimize
Avoiding data dependencies

NEON coding examples

FIR filter
Converting the scalar algorithm into a vector algorithm
Finding the NEON instructions to encode the vector algorithm
Optimizing the code
Using the performance monitor to tune the algorithm
FFT (DFT)
Converting the scalar algorithm into a vector algorithm, understanding how circle properties can be used to process 4 angles
concurrently
Finding the NEON instructions to encode the vector algorithm
Optimizing the code
Using the performance monitor to tune the algorithm

Renseignements pratiques

Inquiry : 2 days

SAS au capital de 138600 € - SIRET 449 597 103 00026 - RCS Nanterre - NAF 6202A 
Centre de Formation, Siège social et administration : 19, rue Pierre Curie - 92400 Courbevoie - Tél. 01 41 16 80 10

Last site update: Sunday 6 July, 2025 at :
https://www.ac6-training.com/en/

https://www.ac6-training.com/en/

