RM5 | Cortex-M33 Implementation |
This course covers the Cortex-M33 ARMv8 core
Course Environment
|
- Basic understanding of microprocessors and microcontrollers
- Labs will be executed on an ARMv8 simulator.
- Printed training material is given to attendees during training.
- Precise and easy to use, it can be used as a reference afterwards.
- Any embedded systems engineer or technician with the above prerequisites.
- The prerequisites indicated above are assessed before the training by the technical supervision of the traineein his company, or by the trainee himself in the exceptional case of an individual trainee.
- Trainee progress is assessed by quizzes offered at the end of various sections to verify that the trainees have assimilated the points presented
- At the end of the training, each trainee receives a certificate attesting that they have successfully completed the course.
- In the event of a problem, discovered during the course, due to a lack of prerequisites by the trainee a different or additional training is offered to them, generally to reinforce their prerequisites,in agreement with their company manager if applicable.
Course Outline
- ARM Cortex-M33 processor macrocell
- ARMv8-M Programmer’s model
- Instruction pipeline
- Fixed memory map
- Privilege, modes and stacks
- Memory Protection Unit
- Security extensions
- Interrupt handling
- Nested Vectored Interrupt Controller [NVIC]
- Power management
- Debug
- Special purpose registers
- Datapath and pipeline
- Write buffer
- Bit-banding
- System timer
- State, privilege and stacks
- System control block
- Internal bus matrix
- External bus matrix to support DMA masters
- Connecting peripherals
- Sharing resources between Cortex-M4 and other CPUs
- Connection to Power Manager Controller
- Application startup
- Placing code, data, stack and heap in the memory map, scatterloading
- Reset and initialisation
- Placing a minimal vector table
- Further memory map considerations, 8-byte stack alignment in handlers
- General points on syntax
- Data processing instructions
- Branch and control flow instructions
- Memory access instructions
- Exception generating instructions
- If, then conditional blocks
- Stack in operation
- Stack limit registers
- Exclusive load and store instructions, implementing atomic sequences
- Memory barriers and synchronization
- Exclusive access instructions
- The Local, Global and External monitors
- Interaction with exclusive access instructions
- Load Exclusive and Store Exclusive usage and constraints
- Multiply instructions
- Packing / unpacking instructions
- V6 ARM SIMD packed add / sub instructions
- SIMD combined add/sub instructions, implementing canonical complex operations
- Multiply and multiply accumulate instructions
- SIMD sum absolute difference instructions
- SIMD select instruction
- Saturation instructions
- The CMSIS library framework
- The CMSIS DSP intrinsic functions
- The optimized CMSIS data-processing functions
- Introduction to IEEE754
- Floating point arithmetic
- Cortex-M4F single precision FPU
- Register bank
- Enabling the FPU
- FPU performance, fused MAC
- Improving the performance by selection flush-to-zero mode and default NaN mode
- Extension of AAPCS to include FP registers
- Mixing C/C++ and assembly
- Coding with GCC compiler
- Measuring stack usage
- Unaligned accesses
- Local and global data issues, alignment of structures
- Further optimisations, linker feedback
- Exception behavior, exception return
- Non-maskable exceptions
- Privilege, modes and stacks
- Fault escalation
- Priority boosting
- Vector table
- Basic interrupt operation, micro-coded interrupt mechanism
- Interrupt entry / exit, timing diagrams
- Interrupt stack
- Tail chaining
- Interrupt response, pre-emption
- Interrupt prioritization
- Interrupt handlers
- The Nested Vectored Interrupt Controller (NVIC)
- Security states
- Register banking between security states
- Stacks and security states
- Security Extension and exceptions
- Secure state address protection
- Secure and Non-Secure states interactions
- Secure sate transitions
- Function calls from Non-Secure to Secure state
- Returning from Secure state
- Exceptions and the Security Extension
- Handling Secure Exceptions
- Handling Non-Secure Exceptions while in the Secure state
- Returning from a Non-Secure exception to the Secure state
- The Security Attribution Unit
- The Implementation Defined Attribution Unit
- Memory types
- Access order
- Memory barriers, self-modifying code
- Memory protection overview, ARM v8 PMSA
- Cortex-M33 MPU and bus faults
- Fault status and address registers
- Region overview, memory type and access control
- Setting up the MPU
- Invasive Debug
- Coresight debug infrastructure
- Halt mode
- Vector catching
- Debug event sources
- Flash patch and breakpoint features
- Data watchpoint and trace
- ARM debug interface specification
- Coresight components
- AHB-Access Port
- Possible DP implementations: Serial Wire JTAG Debug Port [SWJ-DP] or SW-DP
- Non-Invasive debug
- Basic ETM operation
- Instruction trace principles
- Instrumentation trace macrocell
- ITM stimulus port registers
- DWT trace packets
- Hardware event types
- Instruction tracing
- Synchronization packets
- Interface between on-chip trace data from ETM and Instrumentation Trace Macrocell [ITM]
- TPIU components
- Serial Wire connection