

RS1 - Cortex-A9 & Cortex-A5 software implementation

This course describes the architecture of Cortex-A5/A9 and provides coding guidelines

Objectives

- This course aims to explain all low level characteristics of the Cortex-A9 that are required to develop efficient Kernel or application code.
- MMU operation under Linux is described.
- Spin-lock implementation in a multicore system is also detailed.
- Interaction between level 1 caches, level 2 cache and main memory is studied through sequences.
- The exception mechanism is explained, indicating how virtualization enables the support of several operating systems.
- An overview of the Coresight specification is provided prior to describing the debug related units.
- The operation of the Snoop Control Unit when supporting SMP is fully explained, particularly the utilization of cache tag mirrors, the advantage of connecting DMA channels to ACP and the sequences that have to be used to modify a page descriptor.

Labs are run under RVDS.

A more detailed course description is available on request at training@ac6-training.com

Prerequisites and related courses

- More than 12 correct answers to our Cortex-A prerequisites questionnaire.
- Related courses:
 - Programming with RVDS IDE, reference cours RV0 Programming with RVDS IDE
 - **o** VFP programming, reference cours RC0 VFP programming
 - NEON programming, reference cours <u>RC1 NEON-v7 programming</u>

Environnement du cours

• Cours théorique

- o Support de cours au format PDF (en anglais) et une version imprimée lors des sessions en présentiel
- o Cours dispensé via le système de visioconférence Teams (si à distance)
- Le formateur répond aux questions des stagiaires en direct pendant la formation et fournit une assistance technique et pédagogique
- Au début de chaque demi-journée une période est réservée à une interaction avec les stagiaires pour s'assurer que le cours répond à leurs attentes et l'adapter si nécessaire

Audience visée

Tout ingénieur ou technicien en systèmes embarqués possédant les prérequis ci-dessus.

Modalités d'évaluation

• Les prérequis indiqués ci-dessus sont évalués avant la formation par l'encadrement technique du stagiaire dans son entreprise, ou par le stagiaire lui-même dans le cas exceptionnel d'un stagiaire individuel.

- Les progrès des stagiaires sont évalués par des quizz proposés en fin des sections pour vérifier que les stagiaires ont assimilé les points présentés
- En fin de formation, une attestation et un certificat attestant que le stagiaire a suivi le cours avec succès.
 - o En cas de problème dû à un manque de prérequis de la part du stagiaire, constaté lors de la formation, une formation différente ou complémentaire lui est proposée, en général pour conforter ses prérequis, en accord avec son responsable en entreprise le cas échéant.

Plan

First day

INTRODUCTION TO CORTEX-A9

- Block diagram, 1 or 2 AXI master interfaces
- Cortex-A9 variants: single core vs multicore
- New memory-mapped registers in MPCore
- Configurable options: cache size, Jazelle, NEON, FPU, PTM and IEM

ARM BASICS

- States and modes
- · Benefit of register banking
- Exception mechanism
- Purpose of CP15

INSTRUCTION PIPELINE

- Superscalar pipeline operation
- Branch prediction mechanism
- Guidelines for optimal performance
- Return stack

TRUSTZONE

- TrustZone conceptual view
- Secure to non secure permitted transitions
- Memory partitioning
- Interrupt management when there is a mix of secure and non-secure interrupt sources
- Boot sequence

OS SUPPORT SYNCHRONIZATION OVERVIEW

- Inter-Processor Interrupts
- Barriers
- Cluster ID
- Exclusive access monitor
- Spin-lock implementation
- Using events

Second day

THUMB-2, THUMB-2EE AND ARM INSTRUCTION SETS (V7-A)

- Data processing instructions
- Branch and control flow instructions
- Memory access instructions

- Exception generating instructions
- If&then conditional blocks
- Stack in operation
- Accessing special registers
- Interworking ARM and Thumb states
- Thumb-2EE extension for supporting interpreted languages
- Using handlers to manage NULL pointers and array index that are outside a programmable range

MEMORY MANAGEMENT UNIT

- MMU objectives
- Page sizes
- · Page access permission, domain and page protection
- Page attributes, memory types
- Utilization of memory barrier instructions
- Format of the external page descriptor table
- Tablewalk
- Abort exception, on-demand page mechanism
- MMU maintenance operations
- Using a common page descriptor table in an SMP platform, maintaining coherency of multiple TLBs

LEVEL 1 MEMORY SYSTEM

- Cache organization
- Supported maintenance operations
- Write and allocate policies
- Data prefetching
- 4-entry 64-bit merging store buffer

PL310 LEVEL 2 CACHE

- Understanding through sequences how cacheable information is copied from memory to level 1 and level 2 caches
- Transient operations, utilization of line buffers LFBs, LRBs, EBs and STBs
- Discarding a level 3 memory line load through merging writes into STBs
- Cache event monitoring
- Describing each maintenance operation
- Cache lockdown, implementation of a small memory by a boot program
- Interrupt management

Third day

HARDWARE COHERENCY

- Snooping basics
- Cache-to-cache transfers
- MOESI state machine
- Address filtering
- Understanding through sequences how data coherency is maintained between L2 memory and L1 caches
- Accelerator Coherency Port

PERFORMANCE MONITOR

- Event counting
- Debugging a multi-core system with the assistance of the PMU

INTERRUPT CONTROLLER

- Cortex-A9 exception managemen
- Interrupt groups: STI, PPI, SPI, LSPI

- Assigning a security level to each interrupt source (Secure or Non Secure)
- Prioritization of the interrupt sources
- Distribution of the interrupts to the Cortex-A9 cores
- Detailing the interrupt sequence

CORESIGHT DEBUG UNITS

- Benefits of CoreSight
- Invasive debug, non-invasive debug, taking into account the secure attribute
- APBv3 debug interface
- Connection to the Debug Access Port
- Debug facilities offered by Cortex-A9
- Process related breakpoint and watchpoint
- Program counter sampling
- Event catching
- PTM interface, connection to funnel
- Cross-Trigger Interface, debugging a multi-core SoC

COMPILER HINTS AND TIPS

- Placing code, data, stack and heap in the memory map, scatterloading
- Reset and initialization
- Placing a minimal vector table
- Further memory map considerations, 8-byte stack alignment in handlers
- Building and debugging an image
- Long branch veneers
- · ARM compiler optimisations, tail-call optimization, inlining of functions
- Mixing C/C++ and assembly
- Coding with ARM compiler
- Unaligned accesses
- Local and global data issues, alignment of structures
- Further optimisations, linker feedback

Renseignements pratiques

Durée: 3 jours Prix: 1650 € HT