
MC4 - Multi-Core Programming with OSEK/VDX and AutoSAR

Programming real-time and multi-core systems, avoiding common pitfalls

Goals

Understand the specifics of programming multi-core processors
Master concurrent programming

on the same processor
on a multiprocessor system

Interactions with processor architecture features
Cache
Pipeline
I/O optimizations
Multicore and Hyperthreading

Understand the structure of a real time kernel
OSEK/VDX
Multicore Autosar

This course helps you master multitask and real-time programming, understanding how to effectively solve problems using the
primitives provided by the underlying Operating System.

Course Environment

Theoretical course
PDF course material (in English) supplemented by a printed version.
The trainer answers trainees' questions during the training and provide technical and pedagogical assistance.

Practical activities
Practical activities represent from 40% to 50% of course duration.
Code examples, exercises and solutions
One PC (Linux ou Windows) for the practical activities with, if appropriate, a target board.
One PC for two trainees when there are more than 6 trainees.

For onsite trainings:
An installation and test manual is provided to allow preinstallation of the needed software.
The trainer come with target boards if needed during the practical activities (and bring them back at the end of the course).

Downloadable preconfigured virtual machine for post-course practical activities
At the start of each session the trainer will interact with the trainees to ensure the course fits their expectations and correct if
needed

Prerequisite

Good knowledge of embedded C programming
Basic understanding of processor architecture

Pedagogic strategy

The exercises focus on using the mechanisms available to solve traditional problems: Readers-writers,
producer-consumer, the dining philosophers, ...
Each exercise includes a detailed explanation and a diagram which helps to understand how the algorithm works.
For each exercise there an almost complete code is provided, with parts to complete; this allows, after a phase of
understanding of the provided code, to implement features that usually take hours to design.

/


MC4 - Multi-Core Programming with OSEK/VDX and AutoSARTuesday 13 May, 2025

The course includes optional exercises to deepen understanding.

Target Audience

Any embedded systems engineer or technician with the above prerequisites.

Evaluation modalities

The prerequisites indicated above are assessed before the training by the technical supervision of the traineein his company, or
by the trainee himself in the exceptional case of an individual trainee.
Trainee progress is assessed in two different ways, depending on the course:

For courses lending themselves to practical exercises, the results of the exercises are checked by the trainer while, if
necessary, helping trainees to carry them out by providing additional details.
Quizzes are offered at the end of sections that do not include practical exercises to verifythat the trainees have assimilated
the points presented

At the end of the training, each trainee receives a certificate attesting that they have successfully completed the course.
In the event of a problem, discovered during the course, due to a lack of prerequisites by the trainee a different or additional
training is offered to them, generally to reinforce their prerequisites,in agreement with their company manager if applicable.

Plan

First day

Tasks and scheduling in embedded systems

Tasks and task descriptors
Context switch

Exercise: Write a context switch routine
Task scheduling and preemption

Tick based or tickless scheduling
Scheduling systems and schedulability proofs

Fixed priority scheduling
RMA and EDF scheduling
Adaptive scheduling

Exercise: Write a simple, fixed priority, scheduler

Interrupt management in real time systems

Need for interrupts in a real time system
Time interrupts
Device interrupts

Level or Edge interrupts
Hardware and software acknowledge
Interrupt vectoring

Exercise: Write a basic interrupt manager
Interrupts and scheduling

Exercise: Extend the scheduler to also support real-time round-robin scheduling

Multicore interactions

Cache coherency
Snooping basics
Snoop Control Unit: cache-to-cache transfers
MOESI state machine

Memory Ordering and Coherency
ut-of-order accesses
Memory ordering



MC4 - Multi-Core Programming with OSEK/VDX and AutoSARTuesday 13 May, 2025

Memory barriers
DMA data coherency

Multicore data access
Read-Modify-Write instructions
Linked-Read/Conditional-Write

Multicore synchronization
Spinlocks
Inter-Processor Interrupts

Exercise: Writing a spinlock implementation

Second day

Multicore scheduling

Multicore scheduling
Assigning interrupts to processors
Multi-core scheduling

Multicore optimization
Cache usage optimization
Avoiding false sharing
Avoiding cache spilling

Exercise: Study of a multi-core scheduler

Synchronisation primitives

Waiting and waking up tasks
Semaphores

Exercise: Implement Semaphores by direct interaction with the scheduler
Mutual exclusion

Spinlocks and interrupt masking
Mutexes or semaphores

Exercise: Implement the mutex mechanism
Recursive and non-recursive mutexes

Exercise: Check proper nesting of mutexes and recursive/non-recursive use
The priority inversion problem
Priority inheritance (the automagic answer)
Priority ceiling (the design centric answer)

Exercise: Implement a priority ceiling mechanism
Mutexes and condition variables

Exercise: Add Condition variable support to the mutex mechanism
Mailboxes

Third day

Avoiding sequencing problems

The various sequencing problems
Uncontrolled parallel access

Exercise: The producre-consumer problem, illistrating (and avoiding) concurrent access problems
Deadlocks
Livelocks
Starvation

Exercise: The philosophers dinner problem, illustrating (and avoiding) deadlock, livelock and starvation

Osek/VDX tasking architecture

Task management
Basic tasks



MC4 - Multi-Core Programming with OSEK/VDX and AutoSARTuesday 13 May, 2025

Extended tasks
Scheduling policies
Task activation and termination

Interrupt processing
Events
Resources

Autosar and Multicore programming

Autosar multicore architecture
Autosar Locatable Entities
Enhancements to the OSEK scheduling
Autosar spinlocks
The Inter OS-Application Communicator
Migrating Autosar application to multicore

Renseignements pratiques

Inquiry : 3 days

SAS au capital de 138600 € - SIRET 449 597 103 00026 - RCS Nanterre - NAF 6202A 
Centre de Formation, Siège social et administration : 19, rue Pierre Curie - 92400 Courbevoie - Tél. 01 41 16 80 10

Last site update: Tuesday 13 May, 2025 at :
https://www.ac6-training.com/en/

https://www.ac6-training.com/en/

