ac6-training, un département d'Ac6 SAS
 
Site displayed in English (GB)
Site affiché en English (GB)View the site in FrenchVoir le site en English (USA)
go-up

ac6 >> ac6-training >> Online Training >> Languages >> Embedded C++ Programming Inquire Download as PDF Write us

oL3 Embedded C++ Programming

formateur
Objectives
  • Master the C++ language
  • Use C++ Template (generic code) in Embedded Systems
  • Master the C++ Advanced aspects such as polymorphism, single and multiple inheritances.
  • Learn to redefine the C++ operators for dynamic memory allocation in embedded applications
  • Manage C++ exceptions for Secure Embedded applications
  • Use C++ objects to handle serial transmission / reception of character strings
Labs are conducted on a QEMU-emulated ARM-based board
  • Theoretical course
    • PDF course material (in English).
    • Course dispensed using the Teams video-conferencing system.
    • The trainer answers trainees' questions during the training and provide technical and pedagogical assistance through the Teams video-conferencing system.
  • Practical activities
    • Practical activities represent from 40% to 50% of course duration.
    • Code examples, exercises and solutions
    • One Online Linux PC per trainee for the practical activities.
    • The trainer has access to trainees' Online PCs for technical and pedagogical assistance.
    • Eclipse environment and GCC compiler.
    • QEMU Emulated board or physical board connected to the online PC (depending on the course).
    • Some Labs may be completed between sessions and are checked by the trainer on the next session.
  • Downloadable preconfigured virtual machine for post-course practical activities
  • At the start of each session the trainer will interact with the trainees to ensure the course fits their expectations and correct if needed
  • Total: 18 hours
  • 3 sessions, 6 hours each (excluding break time)
  • From 40% to 50% of training time is devoted to practical activities
  • Some Labs may be completed between sessions and are checked by the trainer on the next session
  • Any embedded systems engineer or technician with the above prerequisites.
  • The prerequisites indicated above are assessed before the training by the technical supervision of the traineein his company, or by the trainee himself in the exceptional case of an individual trainee.
  • Trainee progress is assessed in two different ways, depending on the course:
    • For courses lending themselves to practical exercises, the results of the exercises are checked by the trainer while, if necessary, helping trainees to carry them out by providing additional details.
    • Quizzes are offered at the end of sections that do not include practical exercises to verifythat the trainees have assimilated the points presented
  • At the end of the training, each trainee receives a certificate attesting that they have successfully completed the course.
    • In the event of a problem, discovered during the course, due to a lack of prerequisites by the trainee a different or additional training is offered to them, generally to reinforce their prerequisites,in agreement with their company manager if applicable.

Course Outline

  • Introduction to object oriented programming
  • History and definition
  • Overview on C++98/C++03/C++11/C++14/C++17/C++20
  • Modern C++ objectives
  • Switch from C to C++
  • Embedded C++
  • How to write optimized embedded code
Exercise:  Understand function mangling
Exercise:  Function inlining
Exercise:  Volatile variable handling
  • Object Oriented Programming in C++
    • Encapsulation
    • Classes and objects
    • Attributes and member functions
    • Object construction and destruction
    • Construction parameters
    • Copy constructor
    • Object composition and container
    • Scope qualifier operator
Exercise:  Declaring classes and methods
Exercise:  Working with default, copy and parameterized constructors
Exercise:  Understand the differences between composition and aggregation
  • Optimizing parameter object passing
  • Overloading operators by member functions
  • Overloading operators by friend functions
  • Memory management operators overloading
Exercise:  The assignment operator
Exercise:  overloading operators
  • Specialization by addition and substitution
  • Derivation and access rules
  • Construction during inheritance
  • Inheritance polymorphism
  • Virtual methods
Exercise:  Understand inheritance
  • Constant and partially constant objects
  • Persistent objects
  • Flashable objects
Exercise:  Creating constant, mutable, persistent and ROMable objects
  • Launching, capturing and handling exceptions
  • Retriggering exception
  • Exceptions specifications
  • Handling unexpected exception
  • Exception objects of the C++ standard library
Exercise:  Handle errors using exceptions
Exercise:  Unexpected exceptions management
  • Member pointers
  • Generic objects and templates
    • Classes and generic functions
    • Templates overloading
    • Specializing templates
    • STL (Standard Template Library)
    • Templates in embedded systems
  • Polymorphic objects
  • Virtual objects and abstract classes
  • Specializing objects by simple inheritance
    • Building derivate objects
    • Access control rules for inherited objects
    • Specializing objects by multiple inheritance
    • Conflicts resolution by scope operator
    • Virtual inheritance
Exercise:  Generic classes and functions
Exercise:  Understand virtual methods by subclassing a generic Device class
Exercise:  Understand multiple inheritance and virtual bases