
oD1Y - Embedded Linux using Yocto

Objectives

Understanding the architecture of the Linux system
Create and use a cross-development toolchain
Learn how to install Linux on your hardware
Explore the Linux system architecture

Booting Linux
Initializing the system

Install existing packages on the target
Learn how to install Linux on flash chips
Using and customizing Yocto
Creating Yocto-based Embedded Linux platforms
Using Yocto to develop components

Labs are conducted QEMU ARM-based board
We use a recent version of Kernel
We use a recent version of Yocto

Prerequisite

Good C programming skills (see our oL2 - C Language for Embedded MCUscourse)
Preferably knowledge of Linux user programming (see our oD0 - Linux User Mode Programmingcourse)
You may be interested also by the Yocto Expertcourse

Course Environment

Theoretical course
PDF course material (in English).
Course dispensed using the Teams video-conferencing system.
The trainer answers trainees' questions during the training and provide technical and pedagogical assistance through the
Teams video-conferencing system.

Practical activities
Practical activities represent from 40% to 50% of course duration.
Code examples, exercises and solutions
One Online Linux PC per trainee for the practical activities.
The trainer has access to trainees' Online PCs for technical and pedagogical assistance.
Eclipse environment and GCC compiler.
QEMU Emulated board or physical board connected to the online PC (depending on the course).
Some Labs may be completed between sessions and are checked by the trainer on the next session.

Downloadable preconfigured virtual machine for post-course practical activities
At the start of each session the trainer will interact with the trainees to ensure the course fits their expectations and correct if
needed

Duration

Total: 30 hours
5 sessions, 6 hours each (excluding break time)
From 40% to 50% of training time is devoted to practical activities
Some Labs may be completed between sessions and are checked by the trainer on the next session

/
https://www.ac6-training.com/en/cours.php/cat_oLINUX/ref_oL2/language-for-embedded-mcus
https://www.ac6-training.com/en/cours.php/cat_oLINUX/ref_oD0/linux-user-mode-programming
https://www.ac6-training.com/en/cours.php/cat_oLINUX/ref_oY2


oD1Y - Embedded Linux using Yocto Friday 27 June, 2025

Target Audience

Any embedded systems engineer or technician with the above prerequisites.

Evaluation modalities

The prerequisites indicated above are assessed before the training by the technical supervision of the traineein his company, or
by the trainee himself in the exceptional case of an individual trainee.
Trainee progress is assessed in two different ways, depending on the course:

For courses lending themselves to practical exercises, the results of the exercises are checked by the trainer while, if
necessary, helping trainees to carry them out by providing additional details.
Quizzes are offered at the end of sections that do not include practical exercises to verifythat the trainees have assimilated
the points presented

At the end of the training, each trainee receives a certificate attesting that they have successfully completed the course.
In the event of a problem, discovered during the course, due to a lack of prerequisites by the trainee a different or additional
training is offered to them, generally to reinforce their prerequisites,in agreement with their company manager if applicable.

Plan

First Session

Linux overview

Linux
History
Version management

Linux architecture and modularity
Linux system components
The various licenses used by Linux (GPL, LGPL, etc)

Cross compiling toolchains

Pre-compiled toolchains
Toolchain generation tools

Crosstool-ng
Buildroot

Manual toolchain compilation
Exercise: Creating a toolchain with crosstool-ng

Linux tools for embedded systems

Bootloaders (UBoot, Redboot, barebox)
C libraries (glibc, eglibc, uClibc)
Embedded GUIs
Busybox
Embedded distributions

The U-Boot bootloader

Introduction to U-Boot
Booting the board through U-Boot

Booting from NOR
Booting from NAND
Booting from eMMC
Multistage Boot

U-Boot environment variables
User-defined variables



oD1Y - Embedded Linux using Yocto Friday 27 June, 2025

Predefined variables
Variables substitution

The U-Boot minimal shell
U-Boot main commands

Booting an OS
Accessing flash chips
Accessing file systems (NFS, FAT, EXTx, JFFS2…)

The full U-Boot shell
Script structure
Control flow instructions (if, for…)

Exercise: Booting the board on NFS, using pre-existing images

Second Session

Creating the embedded Linux kernel

Downloading stable source code
Getting a tarball
Using GIT

Configuring the kernel
Compiling the kernel and its modules

Modules delivered in-tree
Out-of-tree modules

Installing the kernel and the modules
The Linux BSP overview

Structure
Device Drivers
Device Tree

Exercise: Configuring and compiling a target kernel for the target board

Creating a root file system

Packages
Various package build systems (autotools, CMake, …)
Cross-compiling a package

The all-in-one applications
Busybox, the basic utilities
Dropbear: encrypted communications (ssh)

Manually building your root file system
Device nodes, programs and libraries
Configuration files (network, udev, …)
Installing modules
Looking for and installing the needed libraries
Testing file system consistency and completeness

Exercise: Configuring and compiling Busybox and Dropbear
Exercise: Creating a minimal root file system using busybox and dropbear

The Linux Boot

Linux kernel parameters
The Linux startup sequence
Various initialization systems

busybox init
system V init
systemd

Automatically starting an embedded system
Exercise: Boot Linux automatically starts a user application



oD1Y - Embedded Linux using Yocto Friday 27 June, 2025

Embedded file systems

Storage interfaces
Block devices
MTD

Flash memories and Linux MTDs
NOR flashes
NAND flashes
ONENAND flashes

The various flash file system formats
JFFS2, YAFFS2, UBIFS

Read-only file system
CRAMFS, SQUASHFS

Standard Linux file systems
Ext2/3/4, FAT, NFS

Ramdisks and initrd
Creating an initramfs
Booting through an initramfs

Choosing the right file system formats
Flashing the file system

Exercise: Building an initrd root file system

Third Session

Introduction to Yocto

Overview of Yocto
History
Yocto, Open Embedded and Poky
Purpose of the Yocto project
The main projects

Yocto architecture
Overview
Recipes and classes
Tasks

The Yocto build system

Build system objectives
Building deployable images
Layers and layer priorities
Directory layout
Configuration files (local, machine and distribution)
The bitbake tool

Using Yocto
Building a package
Building an image (root file system + u-boot + kernel)

Miscellaneous tools around Yocto
Yocto SDK
Extensible SDK

Exercise: Building a root file system using Yocto
Exercise: Use bitbake commands to build package & images
Exercise: Building a root file system using Yocto
Exercise: Build an extensible SDK for the generated image
Exercise: Deploy the generated image

Yocto package recipes structure



oD1Y - Embedded Linux using Yocto Friday 27 June, 2025

Recipe architecture
Tasks
Task dependencies
Recipe dependencies

The bitbake language
Standard variables and functions
Classes and recipes
The base Yocto classes
Main bitbake commands

Adding a new layer
Layer structure
Various kinds of layers

Exercise: Adding a new layer

Fourth Session

Writing package recipes for Yocto

Various kind of recipes and classes
Bare program
Makefile-based package
autotools-based package
u-boot
kernel
Out-of-tree module

Recipe creation strategies
From scratch
Using devtool
Using recipetool
From an existing, similar, recipe

Debugging recipes
Debugging recipe selection
Debugging dependencies
Debugging tasks

Defining packaging
Package splitting

Automatically starting a program
Exercise: Writing a recipe for a local user-maintained package
Exercise: Writing and debugging a package recipe for an autotools-based package
Exercise: Starting a program at boot (systemd)

Modifying recipes

Customizing an existing package recipe (.bbappend)
Recipe dependencies
Creating and adding patches

Creating a patch for a community-provided component
Creating a patch for an user-maintained component

Defining new tasks
Task declaration
Coding tasks

Exercise: Adding patches and dependencies to a community package
Exercise: Adding a rootfsinstall task to directly copy the output of a user package in the rootfs image

Fifth Session



oD1Y - Embedded Linux using Yocto Friday 27 June, 2025

Creating new kinds of recipes

Creating classes
Creating new independent classes
Inheriting from an existing class

Exercise: Create a class to generalize the “rootfsinstall” task

Creating a root file system

Building a root file system with Yocto
Creating a custom root file system

Writing an image recipe
Selecting the packages to build
Selecting the file system types
The various kinds of images

Inheriting and customizing images
Customizing system configuration files (network, mount points, …)

Users and groups management
Package management

rpm
opkg

Exercise: Writing and building an image recipe
Exercise: Add new users to the image
Exercise: Create an image with package support for OTA deployment
Exercise: Test OTA update on the generated image

Renseignements pratiques

Inquiry : 30 hours

SAS au capital de 138600 € - SIRET 449 597 103 00026 - RCS Nanterre - NAF 6202A 
Centre de Formation, Siège social et administration : 19, rue Pierre Curie - 92400 Courbevoie - Tél. 01 41 16 80 10

Last site update: Friday 27 June, 2025 at :
https://www.ac6-training.com/en/

https://www.ac6-training.com/en/

