
oSEC8 - Secured Embedded Linux Platform Build

Objectives

Implementing secure boot
Verifying the authenticity of system components before they are loaded and executed.
Ensure the authenticity and integrity of the bootloader, kernel
Implements the Trusted Boot
Provides a secure environment for the secure monitor firmware
Run OP-TEE on secure environment that runs alongside the main operating system

Labs are conducted on QEMU ARM-based board

Prerequisite

C Language knowledge (see for example our L2 training course)
Embedded Linux Build knowledge (see for example our D1 training course)
You may be interested also by the SEC9 Advanced Embedded Linux Security course
You may be interested also by the SEC1 Secure Development for Embedded System course
You may be interested also by the SEC2 Advanced Embedded Systems Security course

Equipment

Training manuals and software exercises
One Linux PC for two trainees
One target platform for two trainees

Duration

Total: 2 days
From 40% to 50% of training time is devoted to practical activities

Course Environment

Theoretical course
PDF course material (in English).
Course dispensed using the Teams video-conferencing system.
The trainer answers trainees' questions during the training and provide technical and pedagogical assistance through the
Teams video-conferencing system.

Practical activities
Practical activities represent from 40% to 50% of course duration.
Code examples, exercises and solutions
One Online Linux PC per trainee for the practical activities.
The trainer has access to trainees' Online PCs for technical and pedagogical assistance.
Eclipse environment and GCC compiler.
QEMU Emulated board or physical board connected to the online PC (depending on the course).
Some Labs may be completed between sessions and are checked by the trainer on the next session.

Downloadable preconfigured virtual machine for post-course practical activities
At the start of each session the trainer will interact with the trainees to ensure the course fits their expectations and correct if
needed

/


oSEC8 - Secured Embedded Linux Platform BuildTuesday 15 July, 2025

Target Audience

Any embedded systems engineer or technician with the above prerequisites.

Evaluation modalities

The prerequisites indicated above are assessed before the training by the technical supervision of the traineein his company, or
by the trainee himself in the exceptional case of an individual trainee.
Trainee progress is assessed in two different ways, depending on the course:

For courses lending themselves to practical exercises, the results of the exercises are checked by the trainer while, if
necessary, helping trainees to carry them out by providing additional details.
Quizzes are offered at the end of sections that do not include practical exercises to verifythat the trainees have assimilated
the points presented

At the end of the training, each trainee receives a certificate attesting that they have successfully completed the course.
In the event of a problem, discovered during the course, due to a lack of prerequisites by the trainee a different or additional
training is offered to them, generally to reinforce their prerequisites,in agreement with their company manager if applicable.

Plan

First Day

Linux overview

Linux history
Linux architecture and modularity
Linux system components
The various licenses used by Linux (GPL, LGPL, etc)

Boot chain

Low-level boot
Boot on NOR
Boot on NAND
Boot on SD/MMC/eMMC
Multistage Boot
Why do we need a trusted boot chain

Security Concerns
Confidentiality and Integrity
Tampering Prevention
Compliance and Certification

Exercise: Boot the platform with the prebuilt image

Secure Boot

Secure Boot concept
The chain of trust
Complete secure boot process

Key Management
Introduction to key management
Cryptographic algorithms and key types
Key storage options: Hardware-based and software-based
Key management processes: Generation and revocation of keys
ARM-based platforms hardware features overview
Secure Monitor
Secure World
Trusted Execution Environment



oSEC8 - Secured Embedded Linux Platform BuildTuesday 15 July, 2025

Secure Boot on RISCV and X86_64
Cryptographic Accelerators

Software Solutions
Open source
Proprietary

Exercise: Generate keys that are going to be used for platform encryption

First and Second Stage Bootloaders

U-Boot
Capabilities and features
Configuration, customization, and compilation
U-Boot SPL as First-Stage Boot Loader (SSBL)
Role of u-boot in the trusted boot chain
How U-Boot verifies the authenticity of the images it loads
Configuration options for securing the boot process
Interaction with the secure world and Trusted Execution Environment
Signing U-boot

Arm Trusted Firmware (ATF)
Overview and features
ATF Boot flow
Services
Build and deploy

Other platform specific components
Exercise: Build and boot the platform with U-boot as FSBL and SSBL
Exercise: Build and Boot the platform with ATF as FSBL and U-boot as SSBL

Secured Linux Image

Introduction to Linux kernel
Source code
Configuration
Compilation

FIT (Flattened Image Tree) Image
What is FIT and why is it used
Advantages of using FIT image
Configuration
Building a Secure FIT Image

Kernel Configuration for a Secure Linux Platform
Configuration options for secure boot in the Linux kernel
Access Control Configuration overview

Exercise: Create a secured FIT Linux image

Second Day

Security Considerations when Creating a Root Filesystem

Tips for hardening and securing a rootfs
Minimizing the rootfs
Strong authentication
Keep software updated
Using initramfs

Read-only root filesystem
Introduction to read-only root filesystem
Purpose and benefits
Overview of the different solutions available
SquashFS
CramFS: Small memory footprint
OverlayFS-based read-only root filesystem



oSEC8 - Secured Embedded Linux Platform BuildTuesday 15 July, 2025

UnionFS-based read-only root filesystem
Considerations when choosing a read-only root filesystem solution

Evaluation based on use case, security, performance, and compatibility
Encrypting Update Images

Securely update Linux platform using Mender
Exercise: Create a read-only file system using SquashFS

Open Portable Trusted Execution Environment (OP-TEE)

Introduction to OP-TEE
Key Features
Hardware, software, and firmware requirements
Architecture of OP-TEE

Components, modules, and communication channels
Use Cases

Secure storage
Secure communication
Secure execution of applications

OP-TEE build and deployment
Setting up the environment
Configuration of OP-TEE
Compilation of OP-TEE

Comparison to other TEE solutions
Trusted Applications (TA) on OP-TEE

The role of a TA in a secure system
Writing a Trusted Application
Loading and executing a Trusted Application within the OP-TEE runtime
Debugging and testing Trusted Applications
Communication between Trusted Applications and normal world applications
Best practices for creating secure Trusted Applications

Exercise: Build and install OP-TEE
Exercise: Write a TA application that communicates with a normal world application

Renseignements pratiques

Inquiry : 12 hours

SAS au capital de 138600 € - SIRET 449 597 103 00026 - RCS Nanterre - NAF 6202A 
Centre de Formation, Siège social et administration : 19, rue Pierre Curie - 92400 Courbevoie - Tél. 01 41 16 80 10

Last site update: Tuesday 15 July, 2025 at :
https://www.ac6-training.com/en/

https://www.ac6-training.com/en/

