
D1Y - Embedded Linux with Yocto

Building embedded Linux platforms using Yocto

Objectives

Understanding the architecture of the Linux system
Learn how to install Linux on your hardware and create a BSP
Explore the Linux system architecture
Booting Linux
Initializing the system
Install existing packages on the target
Learn how to install Linux on flash chips
Using and customizing Yocto
Creating Yocto-based Embedded Linux platforms
Using Yocto to develop components

Labs can be conducted either on qemu or on target boards, that can be:
    Dual Cortex/A7-based "STM32MP15-DK2" boards from STMicroelectronics.
    Quad Cortex/A9-based "SabreLite" boards from NXP.
    Quad Cortex/A53-based "imx8q-evk" boards from NXP.
We use the latest Yocto version supported by the chip provider
We use a recent (4.x) linux kernel, as supported by the chip supplier

Course Environment

Theoretical course
PDF course material (in English) supplemented by a printed version.
The trainer answers trainees' questions during the training and provide technical and pedagogical assistance.

Practical activities
Practical activities represent from 40% to 50% of course duration.
Code examples, exercises and solutions
One PC (Linux ou Windows) for the practical activities with, if appropriate, a target board.
One PC for two trainees when there are more than 6 trainees.

For onsite trainings:
An installation and test manual is provided to allow preinstallation of the needed software.
The trainer come with target boards if needed during the practical activities (and bring them back at the end of the course).

Downloadable preconfigured virtual machine for post-course practical activities
At the start of each session the trainer will interact with the trainees to ensure the course fits their expectations and correct if
needed

Prerequisite

Good C programming skills
Knowledge of Linux user programming (see our D0 - Linux user mode programmingcourse)
Preferably knowledge of Linux kernel and driver programming (see our D3 - Linux Driverscourse)

Target Audience

Any embedded systems engineer or technician with the above prerequisites.

/
https://www.ac6-training.com/en/cours.php/cat_LINUX/ref_D0/linux-user-mode-programming
https://www.ac6-training.com/en/cours.php/cat_LINUX/ref_D3/linux-drivers


D1Y - Embedded Linux with Yocto Tuesday 20 May, 2025

Evaluation modalities

The prerequisites indicated above are assessed before the training by the technical supervision of the traineein his company, or
by the trainee himself in the exceptional case of an individual trainee.
Trainee progress is assessed in two different ways, depending on the course:

For courses lending themselves to practical exercises, the results of the exercises are checked by the trainer while, if
necessary, helping trainees to carry them out by providing additional details.
Quizzes are offered at the end of sections that do not include practical exercises to verifythat the trainees have assimilated
the points presented

At the end of the training, each trainee receives a certificate attesting that they have successfully completed the course.
In the event of a problem, discovered during the course, due to a lack of prerequisites by the trainee a different or additional
training is offered to them, generally to reinforce their prerequisites,in agreement with their company manager if applicable.

Plan

First Day

Introduction to Linux

Linux history and Version management
Linux system architecture

Processes and MMU
System calls
Shared libraries

Linux system components
Toolchain
Bootloader
Kernel
Root file system

Linux packages
The various licenses used by Linux (GPL, LGPL, etc)

Cross compiling toolchains

Pre-compiled toolchains
Toolchain generation tools

Crosstool-ng
Buildroot

Manual toolchain compilation

Linux tools for embedded systems

Boot loaders (UBoot, Redboot, barebox)
Optimized libraries (glibc, uClibc-ng, musl)
Embedded GUIs
Busybox
Embedded distributions

Commercial
Standard
Tools for building custom distributions

The U-Boot bootloader

Introduction to U-Boot
Booting the board through U-Boot

Booting from NOR



D1Y - Embedded Linux with Yocto Tuesday 20 May, 2025

Booting from NAND
Booting from eMMC

U-Boot environment variables
User-defined variables
Predefined variables
Variables substitution

The U-Boot minimal shell
Writing scripts in variables
Executing scripts
Using variables in scripts: the set-script pattern

U-Boot main commands
Booting an OS
Accessing flash chips
Accessing file systems (NFS, FAT, EXTx, JFFS2&)

The full U-Boot shell
Script structure
Control flow instructions (if, for&)

Booting Linux
Linux kernel parameters
The Linux startup sequence

Building and installing U-Boot with its native build system
Exercise: Booting the board on NFS, using pre-existing images
Exercise: Configuring and building u-boot with its native build system

Building the kernel

The Linux build system
Downloading stable source code

Getting a tarball
Using GIT

Configuring the kernel
Compiling the kernel and its modules

Modules delivered in-tree
Out-of-tree modules

Installing the kernel and the modules
Exercise: Configuring and compiling a target kernel for the target board with the kernel build system

Second Day

The Linux BSP

Linux BSP architecture
Overall structure
The ARM BSP
The Linux build system

Defining and initializing the board
Linux device drivers overview

Using the Flattened Device Tree
Exercise: Create a minimal BSP for the target board

Creating a root file system

Packages
Tools to build packages (gcc, Makefile, pkg-config)
Autotools
Cross-compiling a package with autotools

The all-in-one applications
Busybox, the basic utilities
Dropbear: encrypted communications (ssh)



D1Y - Embedded Linux with Yocto Tuesday 20 May, 2025

Manually building your root file system
Device nodes, programs and libraries
Configuration files (network, udev, …)
Installing modules
Looking for and installing the needed libraries
Testing file system consistency and completeness

Exercise: Cross-compiling an autotools-based package
Exercise: Configuring and compiling Busybox and Dropbear
Exercise: Creating a minimal root file system using busybox and dropbear

The Linux Boot

Linux kernel parameters
The Linux startup sequence
Various initialization systems

busybox init
system V init
systemd

Automatically starting an embedded system
Exercise: Boot Linux automatically starts a user application

Embedded file systems

Storage interfaces
Block devices
MTD

Flash memories and Linux MTDs
NOR flashes
NAND flashes
ONENAND flashes

The various flash file system formats
JFFS2, YAFFS2, UBIFS

Read-only file system
CRAMFS, SQUASHFS

Standard Linux file systems
Ext2/3/4, FAT, NFS

Ramdisks and initrd
Creating an initramfs
Booting through an initramfs

Choosing the right file system formats
Flashing the file system

Exercise: Building an initrd root file system

Third Day

Introduction to Yocto

Overview of Yocto
History
Yocto, Open Embedded and Poky
Purpose of the Yocto project
The main projects

Yocto architecture
Overview
Recipes and classes
Tasks

The Yocto build system



D1Y - Embedded Linux with Yocto Tuesday 20 May, 2025

Build system objectives
Building deployable images

Layers and layer priorities
Directory layout
Configuration files (local, machine and distribution)
The bitbake tool

Common options
Using Yocto

Building a package
Building an image (root file system + u-boot + kernel)

Miscellaneous tools around Yocto
Yocto SDK
Extensible SDK

Exercise: Building a root file system using Yocto
Exercise: Use bitbake commands to build package & images
Exercise: Build an extensible SDK for the generated image
Exercise: Deploy the generated image using NFS

Yocto package recipes structure

Recipe architecture
Tasks
Task dependencies
Recipe dependencies

The bitbake language
Standard variables and functions
Classes and recipes
The base Yocto classes
Main bitbake commands

Adding a new layer
Layer structure
Various kinds of layers

Exercise: Adding a new layer

Fourth Day

Writing package recipes for Yocto

Various kind of recipes and classes
Bare program
Makefile-based package
autotools-based package
u-boot
kernel
Out-of-tree module

Recipe creation strategies
From scratch
Using devtool
Using recipetool
From an existing, similar, recipe

Debugging recipes
Debugging recipe selection
Debugging dependencies
Debugging tasks

Defining packaging
Package splitting

Automatically starting a program
Exercise: Writing a recipe for a local user-maintained package
Exercise: Writing and debugging a package recipe for an autotools-based package
Exercise: Starting a program at boot (systemd)



D1Y - Embedded Linux with Yocto Tuesday 20 May, 2025

Modifying recipes

Customizing an existing package recipe (.bbappend)
Recipe dependencies
Creating and adding patches

Creating a patch for a community-provided component
Creating a patch for an user-maintained component

Defining new tasks
Task declaration
Coding tasks

Exercise: Adding patches and dependencies to a community package
Exercise: Adding a rootfsinstall task to directly copy the output of a user package in the rootfs image

Fifth Day

Development process using the extensible SDK and devtool

Using devtool to create a package and its recipe
Using devtool to modify an existing package and recipe
Using devtool to update a recipe to build a new version of a package

Exercise: Create, test and modify a recipe for an existing package using devtool

Creating new kinds of recipes

Creating classes
Creating new independent classes
Inheriting from an existing class

Exercise: Create a class to generalize the “rootfsinstall” task

Creating a root file system

Building a root file system with Yocto
Creating a custom root file system

Writing an image recipe
Selecting the packages to build
Selecting the file system types
The various kinds of images

Inheriting and customizing images
Customizing system configuration files (network, mount points, …)

Package management
rpm
opkg

Exercise: Writing and building an image recipe
Exercise: Create an image with package support for OTA deployment
Exercise: Test OTA update on the generated image

Renseignements pratiques

Inquiry : 5 days

SAS au capital de 138600 € - SIRET 449 597 103 00026 - RCS Nanterre - NAF 6202A 
Centre de Formation, Siège social et administration : 19, rue Pierre Curie - 92400 Courbevoie - Tél. 01 41 16 80 10

Last site update: Tuesday 20 May, 2025 at :
https://www.ac6-training.com/en/

https://www.ac6-training.com/en/

