
D3 - Linux Drivers 

Writing Linux Drivers

Objectives

Mastering kernel development and debug tools
Discovering multi-core programming in the Linux kernel
Programming IOs, interrupts, timers and DMA
Installing and integrating drivers inside Linux kernel
Managing synchronous and asynchronous IOs and ioctl
Writing a complete character driver
Understanding specificities of 2.6 and 3.x versions
Mastering kernel debugging technics with Lauterbach JTAG probes.

Labs are conducted on target boards, that can be:
    Dual Cortex/A7-based "STM32MP15-DISCO" boards from STMicroelectronics.
    Quad Cortex/A9-based "SabreLite" boards from NXP.
    Quad Cortex/A53-based "imx8q-evk" boards from NXP.
We use a recent (4.x) linux kernel, as supported by the chip supplier.

Target audience

This course is for engineers that install Linux on a custom platform and have to create specific device drivers.

Course Environment

Theoretical course
PDF course material (in English) supplemented by a printed version.
The trainer answers trainees' questions during the training and provide technical and pedagogical assistance.

Practical activities
Practical activities represent from 40% to 50% of course duration.
Code examples, exercises and solutions
One PC (Linux ou Windows) for the practical activities with, if appropriate, a target board.
One PC for two trainees when there are more than 6 trainees.

For onsite trainings:
An installation and test manual is provided to allow preinstallation of the needed software.
The trainer come with target boards if needed during the practical activities (and bring them back at the end of the course).

Downloadable preconfigured virtual machine for post-course practical activities
At the start of each session the trainer will interact with the trainees to ensure the course fits their expectations and correct if
needed

Prerequisite

Good C programming skills
Preferably knowledge of Linux user programming (see our D0 - Linux user mode programmingcourse or oD0 - Linux User
Mode Programming course)

Evaluation modalities

The prerequisites indicated above are assessed before the training by the technical supervision of the traineein his company, or
by the trainee himself in the exceptional case of an individual trainee.

/
https://www.ac6-training.com/en/cours.php/cat_LINUX/ref_D0/linux-user-mode-programming
https://www.ac6-training.com/en/cours.php/cat_LINUX/ref_oD0/linux-user-mode-programming
https://www.ac6-training.com/en/cours.php/cat_LINUX/ref_oD0/linux-user-mode-programming


D3 - Linux Drivers Monday 28 April, 2025

Trainee progress is assessed in two different ways, depending on the course:
For courses lending themselves to practical exercises, the results of the exercises are checked by the trainer while, if
necessary, helping trainees to carry them out by providing additional details.
Quizzes are offered at the end of sections that do not include practical exercises to verifythat the trainees have assimilated
the points presented

At the end of the training, each trainee receives a certificate attesting that they have successfully completed the course.
In the event of a problem, discovered during the course, due to a lack of prerequisites by the trainee a different or additional
training is offered to them, generally to reinforce their prerequisites,in agreement with their company manager if applicable.

Plan

FIRST DAY

Linux kernel programming

Development in the Linux kernel
Memory allocation
Linked lists

Exercise: Writing the "hello world" kernel module
Exercise: Adding a driver to kernel sources and configuration menu
Exercise: Using module parameters
Exercise: Writing interdependent modules using memory allocations, reference counting and linked lists

Linux kernel debugging

The /proc and debugfs filesystems
Traces
The kernel Dynamic Debugging interface
The Kernel Address Sanitizer
Debugging memory problems with kmemleak
Using the Undefined Behavior Sanitizer
Code coverage using gcov
Debugging with kgdb
Debugging with a JTAG probe

Exercise: Display dynamic traces on the running kernel
Exercise: Debug a module initialization using kgdb

Kernel multi-tasking

Task handling
Concurrent programming
Timers
Kernel threads

Exercise: Fixing race conditions in the previous lab with mutexes

SECOND DAY

Introduction to Linux drivers

Accessing the device driver from user space
Driver registration

Exercise: Step by step implementation of a character driver:
•  driver registration (major/minor reservation) and device special file creation (/dev)

Driver I/O functions



D3 - Linux Drivers Monday 28 April, 2025

Kernel structures used by drivers
Opening and closing devices
Data transfers
Controlling the device
Mapping device memory

Exercise: Step by step implementation of a character driver:
•  Implementing open and release
•  Implementing read and write
•  Implementing ioctl
•  Implementing mmap

THIRD DAY

Synchronous and asynchronous requests

Task synchronization
Synchronous request
Asynchronous requests

Exercise: implementation of a pipe-like driver:
•  implementing waiting and waking
•  adding non-blocking, asynchronous and multiplexed operations (O_NONBLOCK, SIGIO, poll/select)

Input/Output �and interrupts

Memory-mapped registers
Interrupts
Gpios
User-level access through /sys or the GPIO character driver

Exercise: Polling gpio driver with raw register access
Exercise: Interrupt-based gpio driver with raw register access
Exercise: gpio driver using the gpiolib

Busses

Plug-and-Play management
Static devices declaration

in the BSP code
in the device tree

Platform bus
PCI
SPI
Power management

System sleep
Implementing power management in drivers
Remote wakeup

Exercise: Implementing a platform driver and customizing the device tree to associate it to its device (a serial port)
Exercise: Implementing power management in the previous driver
Exercise: Implementing remote wakeup in the previous driver

FOURTH DAY

Linux Driver Model

Linux Driver Model Architecture
Overview
Classes
Busses

Hot plug management



D3 - Linux Drivers Monday 28 April, 2025

Plugging devices
Removing devices

Writing udev rules
Exercise: Writing a custom class driver
Exercise: Writing a misc driver

DMA

Direct Memory Access
DMA scenarios
Buffer access

DMA programming
Bus master DMA
Slave DMA

Memory barriers
Exercise: Implementing slave DMA in a serial port driver

ANNEXES

USB Drivers

The USB bus
USB devices
User-space USB interface
USB descriptors
USB requests
USB device drivers

Exercise: Writing a USB host driver

Network drivers

structures
network interface representation (struct net_device)
network packet (struct sk_buff)

scatter/gather
interface

receiving packets
sending packets
lost packets management
network interface statistics

New network API (NAPI)
"interrupt mitigation" (suppression of unneeded IRQs)
"packet throttling" (suppression of packets in the driver itself when system is overwhelmed)

Memory management

Virtual Memory
Memory Allocation

Free page management
Normal memory allocation
Virtual memory allocation
Huge allocations



D3 - Linux Drivers Monday 28 April, 2025

Renseignements pratiques

Inquiry : 4 days

SAS au capital de 138600 € - SIRET 449 597 103 00026 - RCS Nanterre - NAF 6202A 
Centre de Formation, Siège social et administration : 19, rue Pierre Curie - 92400 Courbevoie - Tél. 01 41 16 80 10

Last site update: Monday 28 April, 2025 at :
https://www.ac6-training.com/en/

https://www.ac6-training.com/en/

