
oY12 - Comprehensive Yocto Project Usage

Objectives

Using and customizing Yocto
Creating Yocto-based Embedded Linux platforms
Using Yocto to develop components
Customizing the BSP
Building out of tree modules
Setup Source cache

Labs are conducted QEMU ARM-based board
We use a recent version of Yocto

Prerequisite

Good C programming skills (see our oL2 - C Language for Embedded MCUscourse)
Knowledge of Linux Embedded systems (see our oD1 - Embedded Linuxcourse)
Preferably knowledge of Linux user programming (see our oD0 - Linux User Mode Programmingcourse)

Course Environment

Theoretical course
PDF course material (in English).
Course dispensed using the Teams video-conferencing system.
The trainer answers trainees' questions during the training and provide technical and pedagogical assistance through the
Teams video-conferencing system.

Practical activities
Practical activities represent from 40% to 50% of course duration.
Code examples, exercises and solutions
One Online Linux PC per trainee for the practical activities.
The trainer has access to trainees' Online PCs for technical and pedagogical assistance.
Eclipse environment and GCC compiler.
QEMU Emulated board or physical board connected to the online PC (depending on the course).
Some Labs may be completed between sessions and are checked by the trainer on the next session.

Downloadable preconfigured virtual machine for post-course practical activities
At the start of each session the trainer will interact with the trainees to ensure the course fits their expectations and correct if
needed

Duration

Total: 30 hours
5 sessions, 6 hours +/-30 min each (excluding break time)
From 40% to 50% of training time is devoted to practical activities
Some Labs may be completed between sessions and are checked by the trainer on the next session

Target Audience

Any embedded systems engineer or technician with the above prerequisites.

Evaluation modalities

/
https://www.ac6-training.com/en/cours.php/cat_LINUX/ref_oL2/c-language-for-embedded-mcus
https://www.ac6-training.com/en/cours.php/cat_LINUX/ref_oD1/embedded-linux
https://www.ac6-training.com/en/cours.php/cat_LINUX/ref_oD0/linux-user-mode-programming


oY12 - Comprehensive Yocto Project Usage Tuesday 20 May, 2025

The prerequisites indicated above are assessed before the training by the technical supervision of the traineein his company, or
by the trainee himself in the exceptional case of an individual trainee.
Trainee progress is assessed in two different ways, depending on the course:

For courses lending themselves to practical exercises, the results of the exercises are checked by the trainer while, if
necessary, helping trainees to carry them out by providing additional details.
Quizzes are offered at the end of sections that do not include practical exercises to verifythat the trainees have assimilated
the points presented

At the end of the training, each trainee receives a certificate attesting that they have successfully completed the course.
In the event of a problem, discovered during the course, due to a lack of prerequisites by the trainee a different or additional
training is offered to them, generally to reinforce their prerequisites,in agreement with their company manager if applicable.

Plan

Session 1

Introduction to Yocto

Overview of Yocto
History
Yocto, Open Embedded and Poky
Purpose of the Yocto project
The main projects

Yocto architecture
Overview
Recipes and classes
Tasks

The Yocto build system

Build system objectives
Building deployable images
Layers and layer priorities
Directory layout
Configuration files (local, machine and distribution)
The bitbake tool

Using Yocto
Building a package
Building an image (root file system + u-boot + kernel)

Miscellaneous tools around Yocto
Yocto SDK
Extensible SDK

Exercise: Building a root file system using Yocto
Exercise: Use bitbake commands to build package & images
Exercise: Building a root file system using Yocto
Exercise: Build an extensible SDK for the generated image
Exercise: Deploy the generated image

Yocto package recipes structure

Recipe architecture
Tasks
Task dependencies
Recipe dependencies

The bitbake language
Standard variables and functions
Classes and recipes
The base Yocto classes



oY12 - Comprehensive Yocto Project Usage Tuesday 20 May, 2025

Main bitbake commands
Adding a new layer

Layer structure
Various kinds of layers

Exercise: Adding a new layer

Session 2

Writing package recipes for Yocto

Various kind of recipes and classes
Bare program
Makefile-based package
autotools-based package
u-boot
kernel
Out-of-tree module

Recipe creation strategies
From scratch
Using devtool
Using recipetool
From an existing, similar, recipe

Debugging recipes
Debugging recipe selection
Debugging dependencies
Debugging tasks

Defining packaging
Package splitting

Automatically starting a program
Exercise: Writing a recipe for a local user-maintained package
Exercise: Writing and debugging a package recipe for an autotools-based package
Exercise: Starting a program at boot (systemd)

Modifying recipes

Customizing an existing package recipe (.bbappend)
Recipe dependencies
Creating and adding patches

Creating a patch for a community-provided component
Creating a patch for an user-maintained component

Defining new tasks
Task declaration
Coding tasks

Exercise: Adding patches and dependencies to a community package
Exercise: Adding a rootfsinstall task to directly copy the output of a user package in the rootfs image

Session 3

Creating new kinds of recipes

Creating classes
Creating new independent classes
Inheriting from an existing class

Exercise: Create a class to generalize the “rootfsinstall” task

Creating a root file system

Building a root file system with Yocto



oY12 - Comprehensive Yocto Project Usage Tuesday 20 May, 2025

Creating a custom root file system
Writing an image recipe

Selecting the packages to build
Selecting the file system types
The various kinds of images

Inheriting and customizing images
Customizing system configuration files (network, mount points, …)

Users and groups management
Package management

rpm
opkg

Exercise: Writing and building an image recipe
Exercise: Add new users to the image
Exercise: Create an image with package support for OTA deployment
Exercise: Test OTA update on the generated image

Session 4

Development process using the extensible SDK and devtool

Using devtool to create a package and its recipe
Using devtool to modify an existing package and recipe
Using devtool to update a recipe to build a new version of a package

Exercise: Create, test and modify a recipe for an existing package using devtool

Develop and debug applications using SDK and eclipse

Adding eclipse remote debug packages
Configuring eclipse

Exercise: Create remote debugging session using eclipse

Writing tasks in python

Introduction to python
Using python in Yocto

The main bitbake classes
Defining variable values in Python
Writing tasks in Python

Exercise: Writing a task and customizing a recipe in Python

Porting Yocto

Porting Yocto to a new board
BSP architecture

Selecting and configuring u-boot recipe
Selecting and configuring kernel recipe

Adding a new BSP layer (yocto-bsp create)
Exercise: Creating a new BSP layer

Session 5

BSP Development

Adding a custom u-boot to Yocto
Customizing the Yocto kernel recipe

Setting the default configuration
Adding patches
Specifying the kernel sources



oY12 - Comprehensive Yocto Project Usage Tuesday 20 May, 2025

Configuring Linux Kernel
Using menuconfig
Using patches
Creating Configuration Fragments
Validating Configuration

Kernel device tree
Exercise: Create u-boot and kernel recipes to use custom versions, test the result
Exercise: Patch kernel and activate new options using a fragment
Exercise: Create and use a new device tree

Out-of-Tree Modules

Adding modules to image
Creating an out-of-tree module
Kernel modules with eSDK

Exercise: Build and test modules

Tailoring the build system

Setting up a Yocto source cache
Local, per system, cache setup
Setting up a global, network wide, cache

Customizing the build system
Using a prebuilt toolchain
Using a pre-compiled kernel

Optimizing Yocto build times
Using prebuilt, binary, packages
Using shared compilation caches

Exercise: Setting up a global source cache
Exercise: Setting up an optimized build environment and rebuilding an image

Renseignements pratiques

Inquiry : 30 hours

SAS au capital de 138600 € - SIRET 449 597 103 00026 - RCS Nanterre - NAF 6202A 
Centre de Formation, Siège social et administration : 19, rue Pierre Curie - 92400 Courbevoie - Tél. 01 41 16 80 10

Last site update: Tuesday 20 May, 2025 at :
https://www.ac6-training.com/en/

https://www.ac6-training.com/en/

