
RT3 - FreeRTOS Real Time Programming

Real-time programming applied to the FreeRTOS operating system

Objectives

Get an overview on Cortex-M4 architecture
Discover the concepts of real time multitasking
Understand Real Time constraints

Determinism
Preemption
Interrupts

Understand the FreeRTOS architecture
Discover the various FreeRTOS services and APIs
Learn how to develop FreeRTOS applications
Learn how to debug FreeRTOS applications

Course Environment

Theoretical course
PDF course material (in English) supplemented by a printed version.
The trainer answers trainees' questions during the training and provide technical and pedagogical assistance.

Practical activities
Practical activities represent from 40% to 50% of course duration.
Code examples, exercises and solutions
One PC (Linux ou Windows) for the practical activities with, if appropriate, a target board.
One PC for two trainees when there are more than 6 trainees.

For onsite trainings:
An installation and test manual is provided to allow preinstallation of the needed software.
The trainer come with target boards if needed during the practical activities (and bring them back at the end of the course).

Downloadable preconfigured virtual machine for post-course practical activities
At the start of each session the trainer will interact with the trainees to ensure the course fits their expectations and correct if
needed

Prerequisites

Familiarity with embedded C concepts and programming
Basic knowledge of embedded processors

Target Audience

Any embedded systems engineer or technician with the above prerequisites.

Evaluation modalities

The prerequisites indicated above are assessed before the training by the technical supervision of the traineein his company, or
by the trainee himself in the exceptional case of an individual trainee.
Trainee progress is assessed in two different ways, depending on the course:

For courses lending themselves to practical exercises, the results of the exercises are checked by the trainer while, if
necessary, helping trainees to carry them out by providing additional details.

/


RT3 - FreeRTOS Real Time Programming Tuesday 20 May, 2025

Quizzes are offered at the end of sections that do not include practical exercises to verifythat the trainees have assimilated
the points presented

At the end of the training, each trainee receives a certificate attesting that they have successfully completed the course.
In the event of a problem, discovered during the course, due to a lack of prerequisites by the trainee a different or additional
training is offered to them, generally to reinforce their prerequisites,in agreement with their company manager if applicable.

Plan

First Day

Cortex-M resources used by RTOS

Cortex-M Architecture Overview
Two stacks pointers
Different Running-modes and Privileged Levels
MPU Overview
Systick Timer Description

Exception / Interrupt Mechanism Overview
Interrut entry and return Overview
SVC / PendSV / Systick Interrupt Presentation

Developing with the IDE
Exercise: Interrupt Management on Cortex-M4

Element of a real time system

Base real time concepts
The Real Time constraints
Multi-task and real time
Tasks and Task Descriptors

Content of the task descriptor
List of task descriptors

Context Switch
Task Scheduling and Preemption

Tick based or tickless scheduling
Scheduling systems and schedulability proof

Fixed priorities scheduling
RMA and EDF scheduling

Scheduling through FReeRTOS
Deterministic preemptive scheduling
Scheduling strategies
Cooperative scheduling
Hybrid scheduling

Exercise: Analyse a Context Switch

Task Management

Creating Tasks
Task Priorities
Task States
The idle task
Delays
Changing Task Priority
Deleting Tasks
Suspending Tasks
Kernel Structures
Thread Local Storage
Kernel Interrupts on Cortex-M4



RT3 - FreeRTOS Real Time Programming Tuesday 20 May, 2025

Scheduling Traces
Visual trace diagnostics using Tracealyzer

Exercise: Task Management
Exercise: Periodic Tasks
Exercise: Task Statistics

Second Day

FreeRTOS Memory Management

FreeRTOS Memory Managers
Out of Memory management
Stack Overflow Management

Exercise: Check stack usage in existing programs

Resource Management

Mutual exclusion through FreeRTOS
Critical sections (interrupt masking)
Suspending (locking) the scheduler
Mutexes

Mutexes concepts
Mutex or Semaphore
Recursive or not recursive mutexes
Priority inversion problem
Priority inheritance (the automatic answer)
Priority ceiling (the design centric answer)

Gatekeeper tasks
Exercise: Implement mutual exclusion between tasks

Synchronization Primitives

Introduction
Waiting and waking up tasks
Semaphores
Events
Mailboxes

Binary Semaphores through FreeRTOS
Give a Binary Semaphore
Take a binary Semaphore

Queue Management through FreeRTOS
Creation
Sending on a queue
Receiving from a queue
Data management
Sending compound types
Transfering large data

Event groups
Task Notifications
Stream Buffers and Message Buffers

Exercise: Synchronizing a task with another one through binary semaphores
Exercise: Synchronizing a task with another one through queues
Exercise: Task Notifications
Exercise: Properly use stream Buffers
Exercise: Message Buffers

Parallelism Problems Solution

Parallel programming problems



RT3 - FreeRTOS Real Time Programming Tuesday 20 May, 2025

Uncontrolled parallel access
Deadlocks
Livelocks
Starvation

Exercise: The producer-consumer problem, illustrating (and avoiding) concurrent access problems
Exercise: The philosophers dinner problem, illustrating (and avoiding) deadlock, livelock and starvation

Third Day

Interrupt Management

Need for interrupts in a real time system
Software Interrupt
Time Interrupts
Device Interrupts

Level or Edge interrupts
Hardware and Software acknowledge
Interrupt vectoring
Interrupts and scheduling
Deferred interrupt processing through FreeRTOS

Tasks with interrupt synchronization
Using semaphores within an ISR
Counting semaphores
Using queues within an ISR

FreeRTOS interrupt processing
Writing ISRs in C
Interrupt safe functions
Interrupt nesting

Exercise: Synchronize Interrupts with tasks

Software Timer

The Timer Daemon Task
Timer Configuration
One-shot / Auto-reload Timer
Software Timer API
Deferred interrupt handling

Exercise: Implement Soft Timers

FreeRTOS-MPU

The Cortex/M MPU
User and privileged modes
Access permissions

Defining MPU regions
Overlapping regions
Predefined regions
Programmer-defined regions

Needed linker configuration
Practical usage tips

Exercise: Implement protected memory regions

appendixes

Data structures

Need for specific data structures
Data structures



RT3 - FreeRTOS Real Time Programming Tuesday 20 May, 2025

Linked lists
Circular lists
FIFOs
Stacks

Data structures integrity proofs
Assertions
Pre and post-conditions

Thread safety
Exercise: Build a general purpose linked list

Memory Management

Memory management algorithms
Buddy System
Best fit / First Fit
Pools Management

FreeRTOS-provided memory allocation schemes
Allocate-only scheme
Best-fit without coalescing
Thread-safe default malloc

Checking remaining free memory
Adding an application-specific memory allocator
Memory management errors
Stack monitoring

Exercise: Write a simple, thread safe, buddy system memory manager
Exercise: Write a generic, multi-level, memory manager
Exercise: Enhance the memory manager for memory error detection

Renseignements pratiques

Inquiry : 3 days

SAS au capital de 138600 € - SIRET 449 597 103 00026 - RCS Nanterre - NAF 6202A 
Centre de Formation, Siège social et administration : 19, rue Pierre Curie - 92400 Courbevoie - Tél. 01 41 16 80 10

Last site update: Tuesday 20 May, 2025 at :
https://www.ac6-training.com/en/

https://www.ac6-training.com/en/

