
oL2 - C Language for Embedded MCUs

Objectives

Reviewing the C language standard
Putting in evidence the essential C features used in embedded application
Discovering the Embedded context through several bare-metal labs running on an QEMU emulated board STM32F4-Discovery
(Cortex-M4 core based)
Discovering the Debug features
Understanding the different steps of a toolchain
Understanding how to configure a linker script to place code and data in memory
Understanding the Cortex-M4 Application level programmers’ model
Reviewing the boot sequence
Analyzing the compiler optimization and how to write optimized code
Interfacing C and Assembly
Learning how to handle interrupts

Labs are conducted on a QEMU-emulated ARM-based board

Prerequisites

Knowledge of binary arithmetic
Basic knowledge of embedded processors
The knowledge of embedded processor philosophy is recommended

Course Environment

Theoretical course
PDF course material (in English).
Course dispensed using the Teams video-conferencing system.
The trainer answers trainees' questions during the training and provide technical and pedagogical assistance through the
Teams video-conferencing system.

Practical activities
Practical activities represent from 40% to 50% of course duration.
Code examples, exercises and solutions
One Online Linux PC per trainee for the practical activities.
The trainer has access to trainees' Online PCs for technical and pedagogical assistance.
Eclipse environment and GCC compiler.
QEMU Emulated board or physical board connected to the online PC (depending on the course).
Some Labs may be completed between sessions and are checked by the trainer on the next session.

Downloadable preconfigured virtual machine for post-course practical activities
At the start of each session the trainer will interact with the trainees to ensure the course fits their expectations and correct if
needed

Duration

Total: 24 hours
4 sessions, 6 hours each (excluding break time)
From 40% to 50% of training time is devoted to practical activities
Some Labs may be completed between sessions and are checked by the trainer on the next session

/


oL2 - C Language for Embedded MCUs Monday 5 May, 2025

Target Audience

Any embedded systems engineer or technician with the above prerequisites.

Evaluation modalities

The prerequisites indicated above are assessed before the training by the technical supervision of the traineein his company, or
by the trainee himself in the exceptional case of an individual trainee.
Trainee progress is assessed in two different ways, depending on the course:

For courses lending themselves to practical exercises, the results of the exercises are checked by the trainer while, if
necessary, helping trainees to carry them out by providing additional details.
Quizzes are offered at the end of sections that do not include practical exercises to verifythat the trainees have assimilated
the points presented

At the end of the training, each trainee receives a certificate attesting that they have successfully completed the course.
In the event of a problem, discovered during the course, due to a lack of prerequisites by the trainee a different or additional
training is offered to them, generally to reinforce their prerequisites,in agreement with their company manager if applicable.

Plan

First Session

Analyzing the different toolchain elements

Using cross compilation
Compiler, Assembler and Linker Purpose
C source program structure
Preprocessor

Using cross compilation
Compiler, Assembler and Linker Purpose
C source program structure
Preprocessor

Reviewing the different object file sections
Library inclusion
Startup file
GCC compiler options
Configuring the linker to place code and data in the memory, executing code from RAM
Makefile

Exercise: Following the different build steps of a simple program
Exercise: Working with Conditional Compilation
Exercise: Working with the linker, placing code and data in the memory

Lab Environment

Creating a project from scratch
Communicating with the Target
Debugger Windows : Source (C and Disassembly), Memory, Stack, Variables, Registers
Breakpoints

Types and Operators (1st part)

Variable storage class (static, automatic, register et extern) with their location and lifetime
Local and global variable declaration
Scalar types (char, halfword, int, float and double)
Constants
Strings



oL2 - C Language for Embedded MCUs Monday 5 May, 2025

Second Session

Types and Operators (2nd part)

Variable storage class (static, automatic, register et extern) with their location and lifetime
Type conversion, casting
The volatile attribute
C operators (logical, arithmetical and relational)
Operator priority

Exercise: Working with types and operators

Control structures

If/else structure
Switch/case structure
While, do/while and for loopf
Break, continue and go instruction

Exercise: Working with pointers

Pointers and Arrays

Pointer definition
Pointer Initialization, pointer access, pointer operations
Constant and volatile pointer
The restrict attribute
One- and Multi-dimensional arrays
Array initialization, array access, array operations
Pointer array

Exercise: Working with pointers
Exercise: Working with arrays

Structures and unions

Structure variable declaration
Structure variable pointer declaration
Structure field access
Padding, #pragma pack compilation directive
Big and little endian format
Bit field structure declaration
Modeling peripheral register
Structure array
Typedef type
Enum type
Union declaration
Union intitialization and operation

Third Session

Functions

Function prototype (arguments, return value)
Function definition and declaration
Function visibility
Function pointer
Function call
Passing parameter
Stack operation



oL2 - C Language for Embedded MCUs Monday 5 May, 2025

Stack frame, call stack
The recursivity and the stack
Macro vs function
Pipeline and branch
Function inlining
Interfacing C and Assembler

Exercise: Passing parameter to function
Exercise: Analyzing the stack utilization

Standard library Overview

Stdio library
Getchar and putchar functions
Memcpy function
Printf and scanf functions
File access function review

Data structures

Programming FIFOs
Programming Linked list (simple and double)

Exercise: Working with linked list

Dynamic allocation

Dynamic allocation functions: malloc, free function
Sizeof operator
Dynamic memory allocation vs static memory allocation
Stack vs Heap
Memory management algorithms overview

Buddy System
Best fit / First Fit
Pools Management

Memory management errors
Exercise: Using dynamic allocation

Fourth Session

Embedded Context

Peripheral Programming
Peripheral register access and Memory access
Signed vs unsigned
Memory latency
Cache
Synchronization
Interruption necessity in an embedded context

Tail-Chaining
Pre-emption (Nesting)
NVIC Integrated Interrupt Controller
Exception Priority Management

Level and pulse triggered interrupts
Interrupt clearance
Interrupt handler writing
Vector table
Vector installation
System Timer (Systick Timer)
Clarifying the boot sequence
Debug Interface Ovevriew

Exercise: Interrupt Management



oL2 - C Language for Embedded MCUs Monday 5 May, 2025

Compiler Hints and Tips for Cortex-M

Compiler optimizations
Mixing C and Assembly
AAPCS
Function inlining
Unaligned Accesses, padding
Local and global data issues, alignment, Structure

Renseignements pratiques

Inquiry : 24 hours

SAS au capital de 138600 € - SIRET 449 597 103 00026 - RCS Nanterre - NAF 6202A 
Centre de Formation, Siège social et administration : 19, rue Pierre Curie - 92400 Courbevoie - Tél. 01 41 16 80 10

Last site update: Monday 5 May, 2025 at :
https://www.ac6-training.com/en/

https://www.ac6-training.com/en/

