Objectives

- Understand the ARM v8-M architecture and its security features
- Learn about ARMv8-M Memory Protection mechanism enhancement
- Configuring the Security Attribution unit
- How to manage Security access faults
- How to build and debug a secure and non-secure software

Course environment

- Students will be given access to a shared filesystem to save and share their work.
- PDF course material
- The labs will use a ARM Cortex-M33 based board

Prerequisites

- Programming skills: Some programming experience, particularly in C
- Basic knowledge of ARM Cortex-M implementations
- Basic understanding of Security Algorithms and Secure coding

Environnement du cours

- · Cours théorique
 - Support de cours au format PDF (en anglais).
 - o Cours dispensé via le système de visioconférence Teams.
 - Le formateur répond aux questions des stagiaires en direct pendant la formation et fournit une assistance technique et pédagogique.
- Activités pratiques
 - o Les activités pratiques représentent de 40% à 50% de la durée du cours.
 - o Elles permettent de valider ou compléter les connaissances acquises pendant le cours théorique.
 - Exemples de code, exercices et solutions.
 - o Un PC Linux en ligne par stagiaire pour les activités pratiques.
 - o Le formateur a accès aux PC en ligne des stagiaires pour l'assistance technique et pédagogique.
 - o Certains travaux pratiques peuvent être réalisés entre les sessions et sont vérifiés par le formateur lors de la session suivante.
- Une machine virtuelle préconfigurée téléchargeable pour refaire les activités pratiques après le cours
- Au début de chaque session une période est réservée à une interaction avec les stagiaires pour s'assurer que le cours répond à leurs attentes et l'adapter si nécessaire

Audience visée

• Tout ingénieur ou technicien en systèmes embarqués possédant les prérequis ci-dessus.

Modalités d'évaluation

- Les prérequis indiqués ci-dessus sont évalués avant la formation par l'encadrement technique du stagiaire dans son entreprise, ou par le stagiaire lui-même dans le cas exceptionnel d'un stagiaire individuel.
- Les progrès des stagiaires sont évalués de deux façons différentes, suivant le cours:
 - Pour les cours se prêtant à des exercices pratiques, les résultats des exercices sont vérifiés par le formateur, qui aide si nécessaire les stagiaires à les réaliser en apportant des précisions supplémentaires.

oSEC7 - ARM TrustZone for Cortex-M based devicemercredi, 7 mai 2025

- Des quizz sont proposés en fin des sections ne comportant pas d'exercices pratiques pour vérifier que les stagiaires ont assimilé les points présentés
- En fin de formation, chaque stagiaire reçoit une attestation et un certificat attestant qu'il a suivi le cours avec succès.
 - En cas de problème dû à un manque de prérequis de la part du stagiaire, constaté lors de la formation, une formation différente ou complémentaire lui est proposée, en général pour conforter ses prérequis, en accord avec son responsable en entreprise le cas échéant.

Plan

First Day

ARM Architecture and Security

- Overview of ARM TrustZone technology
- TrustZone Architecture
 - Overview of the TrustZone architecture
 - o TrustZone-enabled processors and their features
 - Secure world and non-secure world
- TrustZone security
 - o Overview of TrustZone security model
 - o TrustZone-enabled Cortex-M
- Secure Software Design Considerations

ARMv8-M Memory Protection

- Memory types
- Access order
- Memory barriers, self-modifying code
- Memory protection overview, ARM v8 PMSA
- Cortex-M33 MPU and bus faults
- · Region overview, memory type and access control
- Setting up the MPU

Exercise: Use the MPU to protect an area of memory against unintended access

Cortex-M TrustZone

- TrustZone-enabled Cortex-M processors and their features
- Security states
- · Register banking between security states
- Stacks and security states
- Security Extension and exceptions
- Secure and Non-Secure states interactions
- Exceptions and the Security Extension
 - Handling Secure Exceptions
 - Handling Non-Secure Exceptions while in the Secure state
 - o Returning from a Non-Secure exception to the Secure state
- The Security Attribution Unit (SAU)
- The Implementation Defined Attribution Unit (IDAU)
- Debugging TrustZone-enabled Cortex-M processors

Exercise: Implementing a minimal secure monitor

Exercise: Programming and Debugging a TrustZone application example

			4.0
R	enseic	nements	pratiques
			pialiques

Renseignements: 6 heures