ac6-training, un département d'Ac6 SAS
 
Site affiché en Français
Site affiché en FrançaisVoir le site en English (USA)Voir le site en English (GB)
+ +
- -
Cours en ligne
 
Calendrier  Détails
Systèmes d'Exploitation
 
Calendrier  Détails
Programmation
Calendrier  Détails
Processors
 
Calendrier  Détails
Communications
 
 
 
Calendrier  Détails
+ +
> >
- -

ac6 >> ac6-training >> Cours en ligne >> Embarqué et Temps-Réel >> Programmation Linux temps-réel et multi-cŒurs Télécharger la page Ecrivez nous

oRT1 Programmation Linux temps-réel et multi-cŒurs

Programmation du système Linux temps-réel et multi-cŒurs, en évitant les pièges courants

formateur
Objectifs
  • Découvrir les concepts du multitâche temps-réel
  • Comprendre les spécificités des processeurs multicŒurs
  • Maîtriser la programmation concurrente
    • sur un même processeur
    • sur un système multiprocesseur
  • Comprendre les contraintes du temps réel
    • Déterminisme
    • Préemption
    • Interruptions
  • Interactions avec l’architecture du processeur
    • Cache
    • Pipeline
    • Optimisations E/S
    • Multicore et "Hyperthreading"
  • Déboguer des applications temps-réel
  • Comprendre la structure d'un noyau temps-réel
Les travaux pratiques sont effectués sur une carte ARM QEMU
  • Bonnes connaissances en programmation C (voir notre cours L2)
  • Compréhension de base de l'architecture des processeurs
  • Cours théorique
    • Support de cours au format PDF (en anglais).
    • Cours dispensé via le système de visioconférence Teams.
    • Le formateur répond aux questions des stagiaires en direct pendant la formation et fournit une assistance technique et pédagogique.
  • Activités pratiques
    • Les activités pratiques représentent de 40% à 50% de la durée du cours.
    • Elles permettent de valider ou compléter les connaissances acquises pendant le cours théorique.
    • Exemples de code, exercices et solutions.
    • Un PC Linux en ligne par stagiaire pour les activités pratiques.
    • Le formateur a accès aux PC en ligne des stagiaires pour l'assistance technique et pédagogique.
    • Certains travaux pratiques peuvent être réalisés entre les sessions et sont vérifiés par le formateur lors de la session suivante.
  • Une machine virtuelle préconfigurée téléchargeable pour refaire les activités pratiques après le cours
  • Au début de chaque session une période est réservée à une interaction avec les stagiaires pour s'assurer que le cours répond à leurs attentes et l'adapter si nécessaire
  • Tout ingénieur ou technicien en systèmes embarqués possédant les prérequis ci-dessus
  • Totale : 30 heures
  • 5 sessions de 6 heures chacune (hors temps de pause)
  • De 40% à 50% du temps de formation est consacré aux activités pratiques
  • Certains travaux pratiques peuvent être réalisés entre les sessions et sont vérifiés par le formateur lors de la session suivante
  • Les prérequis indiqués ci-dessus sont évalués avant la formation par l'encadrement technique du stagiaire dans son entreprise, ou par le stagiaire lui-même dans le cas exceptionnel d'un stagiaire individuel.
  • Les progrès des stagiaires sont évalués de deux façons différentes, suivant le cours:
    • Pour les cours se prêtant à des exercices pratiques, les résultats des exercices sont vérifiés par le formateur, qui aide si nécessaire les stagiaires à les réaliser en apportant des précisions supplémentaires.
    • Des quizz sont proposés en fin des sections ne comportant pas d'exercices pratiques pour vérifier que les stagiaires ont assimilé les points présentés
  • En fin de formation, chaque stagiaire reçoit une attestation et un certificat attestant qu'il a suivi le cours avec succès.
    • En cas de problème dû à un manque de prérequis de la part du stagiaire, constaté lors de la formation, une formation différente ou complémentaire lui est proposée, en général pour conforter ses prérequis, en accord avec son responsable en entreprise le cas échéant.

Plan du cours

  • Base real time concepts
  • The real time constraints
  • Multi-task and real-time
  • Multi-core and Hyperthreading
Exercise :  Prepare the environment
Exercise :  Create a simple context switch routine
  • Need for specific data structures
  • Thread safe data structures
    • Linked lists (simple or double links)
    • Circular lists
    • FIFOs
    • Stacks
  • Data structure integrity proofs
    • Assertions
    • Pre and post-conditions
Exercise :  Build a general purpose thread safe doubly linked list
  • Memory management algorithms
    • Buddy system
    • Best fit
    • First fit
    • Pool management
  • Memory management errors
    • memory leaks
    • using unallocated/deallocated memory
    • stack monitoring
Exercise :  Write a simple, thread safe, buddy system memory manager
Exercise :  Write a generic, multi-level, memory manager
Exercise :  Enhance the memory manager for memory error detection
Exercise :  Enhance the context switching infrastructure to monitor stack use
  • Tasks and task descriptors
    • Content of the task descriptor
    • Lists of task descriptors
  • Context switch
  • Task scheduling and preemption
    • Tick based or tickless scheduling
  • Scheduling systems and schedulability proofs
    • Fixed priority scheduling
    • RMA and EDF scheduling
    • Adaptive scheduling
Exercise :  Write a simple, fixed priority, scheduler
  • Need for interrupts in a real time system
    • Time interrupts
    • Device interrupts
  • Level or Edge interrupts
  • Hardware and software acknowledge
  • Interrupt vectoring
  • Interrupts and scheduling
Exercise :  Write a basic interrupt manager
Exercise :  Extend the scheduler to also support real-time round-robin scheduling
  • Cache coherency
    • Snooping basics
    • Snoop Control Unit: cache-to-cache transfers
    • MOESI state machine
  • Memory Ordering and Coherency
    • Out-of-order accesses
    • Memory ordering
    • Memory barriers
    • DMA data coherency
  • Multicore data access
    • Read-Modify-Write instructions
    • Linked-Read/Conditional-Write
  • Multicore synchronization
    • Spinlocks
    • Inter-Processor Interrupts
Exercise :  Writing a spinlock implementation
  • Multicore scheduling
    • Assigning interrupts to processors
    • Multi-core scheduling
  • Multicore optimization
    • Cache usage optimization
    • Avoiding false sharing
    • Avoiding cache spilling
Exercise :  Study of a multi-core scheduler
  • Waiting and waking up tasks
  • Semaphores
  • Mutual exclusion
    • Spinlocks and interrupt masking
    • Mutexes or semaphores
    • Recursive and non-recursive mutexes
    • The priority inversion problem
    • Priority inheritance (the automagic answer)
    • Priority ceiling (the design centric answer)
  • Mutexes and condition variables
  • Mailboxes
  •  
Exercise :  Implement Semaphores by direct interaction with the scheduler
Exercise :  Implement the mutex mechanism
Exercise :  Check proper nesting of mutexes and recursive/non-recursive use
Exercise :  Implement a priority ceiling mechanism
Exercise :  Add Condition variable support to the mutex mechanism
  • The various sequencing problems
    • Uncontrolled parallel access
    • Deadlocks
    • Livelocks
    • Starvation
Exercise :  The producer-consumer problem, illustrating (and avoiding) concurrent access problems
Exercise :  The philosophers dinner problem, illustrating (and avoiding) deadlock, livelock and starvation
  • The pthread standard
    • threads
    • mutexes and condition variables
    • Thread local storage
  • POSIX semaphores
  • Scheduling
    • context switches
    • scheduling policies (real-time, traditional)
    • preemption
Exercise :  Solve the classic readers-writers problem with POSIX threads
Exercise :  Maintain per-thread static data for the readers-writers problem
  • Kernel memory management
    • "buddy" and "slab" memory allocation algorithms
  • Kernel task handling
  • Linux kernel threads
    • creation
    • termination
  • Concurrent kernel programming
    • atomic operations
    • spinlocks
    • read/write locks
    • semaphores and read/write semaphores
    • mutexes
    • sequential locks
    • read-copy-update
    • hardware spinlock
  • Basic thread synchronization
    • waiting queues
    • completion events
  • Hardware clocks
    • clockevents
  • Software clocks
    • delayed execution
    • kernel timers
    • high resolution timers
Exercise :  Create a kernel-mode execution barrier using kernel synchronization primitives
Exercise :  Create a kernel event synchronization object, using basic synchronization primitives
  • AMP overview
    • Architecture
    • Shared memory
    • Challenges comparing to SMP
  • Inter-processor communication
  • OpenAMP framework
    • Remoteproc
    • rpmsg
Exercise :  Sending messages between AMP cores demonstration